Multilinear regression as loss minimization.

Goals

o Derive the general form of the ordinary least squares (OLS) estimator in matrix notation

— Introduce the multilinear regression problem as a generalization of simple linear
regression

— Review matrix notation in the context of multilinear regression

— Derive the general OLS formula and show that the simple least squares is a special
case

Reading

These notes are a supplement for the following readings:

o Freedman (2009) Section 4.1
» Ding (2024) Section 3.1
o Davidson, MacKinnon, et al. (2004) Sections 1.4-1.5

Have my grades been increasing over time?

Let’s look again at the grades dataset, and consider the question: “have my grades been
increasing over time?” I personally am interested in whether some aspect of my courses has
been causing an upward trend, and maybe you are interested in extrapolating such a trend to
the present semester.

grade_v_time <- lm(grade ~ time, all_grades_df)
print (summary(grade_v_time))



Call:
Im(formula = grade ~ time, data = all_grades_df)

Residuals:
Min 1Q Median 3Q Max
-0.86223 -0.03835 0.03343 0.07532 0.13777

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 0.846658 0.020112 42.098 <2e-16 *xx*
time 0.015571 0.007198 2.163 0.0315 =*

Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1234 on 252 degrees of freedom
Multiple R-squared: 0.01823, Adjusted R-squared: 0.01434
F-statistic: 4.68 on 1 and 252 DF, p-value: 0.03146

grade_pred <- predict(grade_v_time, all_grades_df)

all_grades_df 7%>%

ggplot () +
geom_violin(aes(x=time, y=grade, group=time)) +
geom_point (aes(x=time, y=grade)) +
geom_line(aes(x=time, y=grade_pred), color="red")
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Here, we see a very weak but increasing trend, probably driven by some very low grades in
the first two semesters.

However, this comparison, even as it is, is complicated by the fact that time periods 1 and 2
were 151A, and time periods 3 and 4 were 154. In fact, if regress on the class label instead, 1
get a simliar result:

grade_v_class <- lm(grade ~ class, all_grades_df)
summary (grade_v_class)

Call:
Im(formula = grade ~ class, data = all_grades_df)

Residuals:
Min 1Q Median 3Q Max
-0.86777 -0.04168 0.03599 0.07514 0.13223

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.86777 0.01120 77.479 <2e-16 *x*x
class154 0.03636 0.01548 2.349 0.0196 =*



Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1232 on 252 degrees of freedom
Multiple R-squared: 0.02143, Adjusted R-squared: 0.01755
F-statistic: 5.519 on 1 and 252 DF, p-value: 0.01958

grade_v_class <- 1lm(grade ~ class, all_grades_df)

grade_v_time <- lm(grade ~ time, all_grades_df)

grade_pred_class <- predict(grade_v_class, all_grades_df)

grade_pred_time <- predict(grade_v_time, all_grades_df)

all_grades_df />%
ggplot() +
geom_line(aes(x=time, y=grade_pred_class, color="Class regression")) +
geom_line(aes(x=time, y=grade_pred_time, color="Time regression")) +
geom_point (aes(x=time, y=grade_pred_class, color="Class regression")) +
geom_point(aes(x=time, y=grade_pred_time, color="Time regression"))
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Here, we can see how the two fits differ. The prediction for regression on class is a step function
for the change in which class is being taught, where the time trend is continuous.

(3 .
1 Question:

Can we possibly disentangle the effect of time from which class is being taught? How?




One way to ask this formally is to run the regression on both:

lm(grade ~ time + class, all_grades_df) 7%>% summary()

Call:
Im(formula = grade ~ time + class, data = all_grades_df)

Residuals:
Min 1Q Median 3Q Max
-0.86615 -0.04175 0.03580 0.07452 0.13385

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 0.863349 0.027039 31.930 <2e-16 **x
time 0.002801 0.015584 0.180 0.858
class154 0.031012 0.033566 0.924 0.356

Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1234 on 251 degrees of freedom
Multiple R-squared: 0.02156, Adjusted R-squared: 0.01376
F-statistic: 2.765 on 2 and 251 DF, p-value: 0.06488

Interestingly, we see that though each regression is statistically significant separately, in the
combined regression neither are significant. This is one way of saying, using regression,
that we cannot disentangle the effect of class and time with this dataset. In other
words, without more data, the answer to our question is inconclusive — although there certainly
doesn’t seem to be strong evidence for marked trends.

This is no longer simple linear regression! In this unit, we will study versions of regression
that include more than one covariate in this way.

Matrix notation

The simple linear regression formula came from combining the equations that set the univariate
gradients equal to zero, and then recognizing a matrix equation. We can in fact do both at
the same time! But first we need some notation

Here is a formal definition of the type of model that we will study for the vast majority of the
semester:



yn:lenl+/82$n2+-..+/813$np+€n, FOI"TL:L...,N. (1)

@ Notation

I will always use N for the number of observed data points, and P for the dimension of
the regression vector.

Equation 1 is a general form of simpler cases. For example, if we take z,;, =1, z,, = z,, to
be some scalar, and P = 2, then Equation 1 becomes ?@eq-lm-simple:

Yp = By + Box,, +€,, Forn=1,. N.

The residuals €,, measure the “misfit” of the line. If you know f,, ..., Bp, then you can com-
pute

€n = Yn — (ﬁlq"nl + ﬁZIn2 +...+ an)'
But in general we only observe y, and z,,...,2,p, and we choose (,...,3p to make the
residuals small. (How we do this precisely will be something we talk about at great length.)

The general form of Equation 1 can be written more compactly using matrix and vector
notation. Specifically, if we let

Tn1 b1
T

x, = 7:12 and f:= ’6:2
Lnp Bp

@ Notation

Bold lowercase variables are column vectors (unless otherwise specified).

Recall that the “transpose” operator (-)" flips the row and columns of a matrix. For example,

T
n

)y = (Tp1 Tpy . Tup).

By matrix multiplication rules,



A1
Ba

':EZB = (xnl Tpo - an) = ﬁlxnl + 521:712 T+ Lpp-

Bp

@ Notation

I have written ) 8 for the “dot product” or “inner product” between z,, and 3. Writing
it in this way clarifies the relationship with matrix notation below.

There are many other ways to denote inner products in the literature, including x,, - 8
and < z,,0 >.

Then we can compactly write

y,=z)8+¢e,, Forn=1,. N.

We can compactify it even further if we stack the n observations: %

Yy =218+
Yo :xgﬂ—l—EQ

YN :x]TVﬁ—i-é‘N

As before we can stack the responses and residuals:

Y1 €1
€
y .= | % and e:= | 2
Yp €p
We can also stack the regressors:

T T T x!
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@ Notation

are Y above, or X when P = 1.

I will use upper case bold letters for multi-dimensional matrices like X. But I may also
use upper case bold letters even when the quantity could also be a column vector, when I
think it’s more useful to think of the quantity as a matrix with a single column. Examples

Note that by matrix multiplication rules,

xi xLB
Lo T, 3
X=11 XB=|
x,, 8
| i
LN TN

so we end up with the extremely tidy expression

Y, = 12, + Boxyg + ... + 2, p+¢,, Forn=1.. N

is the same as

Y =Xp+e.

In the case of simple least squares, we can write

1 =
X = 1 112 R
1 xy

and verify that the n—th row of Equation 2 is the same as 7@eq-lm-simple.

Least squares in matrix notation

Using our tidy expression Equation 2, we can easily write out the sum of the squared errors

as



N
e2=cle= (Y -XB)(Y - XB)
-1

n
=Yy -8 X"Y-Y'XB+8 XX
=Yy —2v'x8+8 X"x38.
This is a quadratic function of the vector 5. We wish to find the minimum of this quantity

as a function of 5. We might hope that the minimum occurs at a point where the gradient of
this expression is zero.

Rather than compute the univariate derivative with respect to each component, we can com-
pute the multivariate gradient with respect to the vector.

Let’s recall some facts from vector calculus.

@ Notation

Take z € R to be a P-vector. and let f(2) a scalar-valued function of the vector z. We
write

2 f(z
as(z) _ (710
%\ s

That is, the partial ag—(j) is a P—vector of the stacked univariate dervatives.

Recall a couple rules from vector calculus. Let v denote a P—vector and A a symmetric matrix.
Then

o'z 0z Az
=v and

52 5, =2Az.

Exercise

Prove these results above using univariate derivatives and our stacking convention.

Applying these two rules to our least squares objective,

Oc’e 0 0 T
57 8—BYY Q%YX,BJrB

=0—2X'Y +2X XB.

X'X
55 B



Assuming our estimator B sets these partial derivatives are equal to zero, we then get

X'xg=Xx"y. (4)

This is a set of P equations in P unknowns. If it is not degenerate, one can solve for B That
is, if the matrix X ' X is invertible, then we can multiply both sides of Equation 4 by (X X )t
to get

B=(xX"X)'x"y (5)

@ Notation

We're going to be talking again and again about the “ordinary least squares” (“OLS”)
problem

B =argmine’e where Y =XB+e where y, =z, B+¢e, foralln=1,..,N.
B

It will be nice to have some shorthand for this problem so I don’t have to write this
out every time. All of the following will be understood as shorthand for the preceding
problem. In each, the fact that S minimizes the sum of squared residuals is implicit.

Y ~XpB+e¢ Only the least squares criterion is implicit
Y ~ Xp € implicit
Y~X e, B implicit
Yy ~ T} B €., IN implicit
Yp ~ T B+ e, N implicit
Yp ~ Ty €,, By N implicit
Yp ~ Ly + Tpo + ... +2,,p €y B, N implicit

(The final shorthand is closest to the notation for the R 1m function.) This is convenient
because, for example, certain properties of the regression y,, ~ z,, don’t necessarily need
to commit to which symbol we use for the coefficients. Symbols for the missing pieces
will hopefuly be clear from context as necessary.

@ Notation

Unlike many other regression texts (and the 1m function), I will not necessarily assume
that a constant is included in the regression. One can always take a generic regression
Y, ~ x,, to include a constant by assuming that one of the entries of x,, is one. At some
points my convention of not including a constant by default will lead to formulas that
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may be at odds with some textbooks. But these differences are superficial, and are, in
my mind, more than made up for by the generality and simplicity of treating constants
as just another regressor.

Some simple familiar examples in matrix form

The sample mean

Sample means are in fact a special case of multi linear regression. Seeing this will be helpful
when we interpret categorical variables.

@ Notation

I will use 1 to denote a vector full of ones. Usually it will be an N—vector, but sometimes
its dimension will just be implicit. Similarly, 0 is a vector of zeros.

We showed earlier that the sample mean is a special case of the regression y, ~ 1- 3. This can
be expressed in matrix notation by taking X =1 as a N x 1 vector. We then have

N
X'x=1"1=)1-1=N,

n=1

so X X is invertible as long as N > 0 (i.e., if you have at least one datapoint), with (XTX)_1 =
1/N. We also have

N
X'Y=1Y=> 1.y,=Ny,
n=1

and so

~ Nu
f=xX"X)'X'y=01"1)11"y = Wy — 7,

as expected.

A single regressor

For completness, let’s also see what happens when we omit the constant from simple linear
regression. Suppose that we regress y,, ~ z,, where z,, is a scalar.
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Warning

R adds a constant by default! To remove it, run something like lm(y ~ x - 1,
my_dataframe).

Let’s suppose that E [z,] = 0 and Var (z,,) = 0® > 0. We have

Ty
T

X = 2
TN

SO

N

-

X X = E z2

n=1

Depending on the distribution of z,,, it may be possible for X "X to be non-invertible!
Exercise

Produce a distribution for x,, where X "X is non-invertible with positive probability for
any N.

However, as N — o0, %XTX — 02 by the LLN, and since o2 > 0, %XTX will be invertible
with probability approaching one as N goes to infinity.

Common quantities

Given a regression fit, there are a few key quantities that we’ll use over and over again.

First of all, the fit is given by
?:XB & @n:xzﬁ’.

This is the regressions’ “guess” at the response for a given value of z,,. Analogously, we can

YW

define the “error”, “residual”, or “fitted residual:”

E=Y-Y & £,=Y,— U,



We can call

AT~
Y Y := ESS = "Explained sum of squares”
Y'Y := TSS = "Total sum of squares”

2"z := RSS = "Residual sum of squares”.

In your homework, you will show that T'SS = ESS + RSS. It follows immediately that
0 < ESS <TSS, and we can define

ESS
R2 = m S [0, 1]

In a sense, high R? means a “good fit” in the sense that the least squares fit has low error.

High R? is not necessarily a good fit

But high R? does not necessarily mean that the fit is accurate or useful! In particular, by
increasing the number of regressors, you can only make R? increase, and there are clearly silly
regressions with great R2.

Here are two examples:

« Y AY
o Y ~ 1T

Davidson, Russell, James G MacKinnon, et al. 2004. Econometric Theory and Methods. Vol.
5. Oxford University Press New York.

Ding, Peng. 2024. “Linear Model and Extensions.” arXiv Preprint arXiv:2401.00649.

Freedman, David. 2009. Statistical Models: Theory and Practice. cambridge university press.
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