Linear transformations of regressors.

Transformations of regressors

One—hot encodings and constants

Recall in the Ames housing data, we ran the following two regressions:

Yn ™~ Pelne + ngng
Yn ™~ 70 + Vgivng + En = ZT—lL—’Y?
) )T

where I take v = (79,7,) and z, = (1,7,

We found using R that the best fits were given by
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We can compute the latter by constructing the Z matrix whose rows are 2. (We use Z to

-
differentiate the X matrix from the previous example.) Using similar reasoning to the one-hot
encoding, we see that
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This is invertible as long as N, # N, i.e., as long as there is at least one k,, = e. We have
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It is possible (but a little tedious) to prove 4, = y, and 7, = y, — ¥, using these formulas. But
an easier way to see it is as follows.



Note that z,,, + z,,, = 1. That means we can always re-write the regression with a constant
as

Yn ~ Yo T+ Yg¥ng = VO(xne + xng) + Yg%Tng = Y0Lne + (70 + ’Yg)xng'

Now, we already know from the one-hot encoding case that the sum of squared residuals is
minimized by setting 7, = y. and 4, + 7, = y,- We can then solve for 7, = y, — ¥, as
expected.
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This is case where we have two regressions whose regressors are invertible linear combinations
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It follows that if you can acheive a least squares fit with x|, B , you can achieve exactly the same
fit with

of one another:
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which can be achieved by taking
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exactly as expected.
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We will see this is an entirely general result: when regressions are related by invertible linear
transformations of regressors, the fit does not change, but the optimal coefficients are linear
transforms of one another.
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Redundant regressors

Suppose we run the (silly) regression y ~ -1+ -3 +¢,,. That is, we regress on both the
constant 1 and the constant 3. We have



and so
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This is not invertible (the second row is 3 times the first, and the determinant is 9 —3-3 = 0).
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So 3 is not defined. What went wrong?

One way to see this is to define § = a + 3 and write

2

-, 8 = y. But there are an infinite set of

There is obviously only one B that minimizes 25:1 €
choices for « and + satisfying

at+3y=0=y.

Specifically, for any value of v we can take @ = y — 3+, leaving 5 unchanged. All of these
choices for a,y acheive the same 27]:]:1 2! So the least squares criterion cannot distinguish
among them.

In general, this is what it means for X" X to be non-invertibile. It happens precisely when
there are redundant regressors, and many regression coefficients that result in the same fit.

Redundant regressors and zero eigenvalues

In fact, X T X is invertible precisely when X " X has a zero eigenvalue. In the preceding example,

we can see that
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so (3,—1)" is a zero eigenvector. (In general you might find this by numerical eigenvalue
decomposition, but in this case you can just guess the zero eigenvalue.)

Going back to ?@eq-ols-esteq, we see that this means that
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for any value of C. This means there are an infinite set of “optimal” values, all of which set
the gradient of the loss to zero, and all of which have the same value of the loss function
(i.e. acheive the same fit). And you can check that these family of values are exactly the ones
that satisfy o + 3y = ﬁA = 7, since

at+3y=(1 3) (:) and (1 3) (_31):0.

Soon, we will see that this is a general result: when X "X is not invertible, that means there
are many equivalent least squares fits, all characterized precisely by the zero eigenvectors of
X'X.

Zero variance regressors

An example of redundant regressors occurs when the sample variance of z,, is zero and a
constant is included in the regression. Specifically, suppose that @ — 72 = 0.

Exercise

Prove that 77 — 7° = 0 means ,, is a constant with x,, = . Hint: look at the sample
variance of x,,.

Let’s regress y,, ~ By + Byx,,.

For simplicity, let’s take x,, = 3. In that case we can rewrite our estimating equation as

Yn = Bl + /B2xn + En = (/81 + B2‘/i> + En:

We’re thus in the previous setting with & in place of the number 3.

Orthogonal regressors

Suppose we have regressors such that the columns of X are orthonormal. This seems strange
at first, since we usually specify the rows of the regressors, not the columns. But in fact we
have seen a near—example with one-hot encodings, which are defined row—wise, but which
produce orthogonal column vectors in X. If we divide a one—hot encoding by the square root
of the number of ones in the whole dataset, we produce an normal column vector.

If X has orthonormal columns, then X TX=1 , the identity matrix, and so

B=xX"X)'Xx"y=X"Y.



This is of course the same answer we would have gotten if we had tried to write Y in the basis
of the column vectors of X:

Y =3X, 4.+ BpXp=X3=
X'y=X"Xg=5

This regression is particularly simple — each component of B depends only on its corresponding
column of X.

Note that if each entry of x,, is mean zero, unit variance, and uncorrelated with the other
entries, then %X X1 by the LLN. Such a regressor matrix is not typically orthogonal for
any particular N, but it approaches orthogonality as N grows.
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