
Linear transformations of regressors.

Transformations of regressors

One–hot encodings and constants

Recall in the Ames housing data, we ran the following two regressions:

𝑦𝑛 ∼ 𝛽𝑒𝑥𝑛𝑒 + 𝛽𝑔𝑥𝑛𝑔
𝑦𝑛 ∼ 𝛾0 + 𝛾𝑔𝑥𝑛𝑔 + 𝜀𝑛 = 𝑧⊺

𝑛 𝛾,
where I take 𝛾 = (𝛾0, 𝛾𝑔)⊺ and 𝑧𝑛 = (1, 𝑥𝑛𝑔)⊺.

We found using R that the best fits were given by

̂𝛽𝑒 = ̄𝑦𝑒 ̂𝛽𝑔 = ̄𝑦𝑔
̂𝛾0 = ̄𝑦𝑒 ̂𝛾𝑔 = ̄𝑦𝑔 − ̄𝑦𝑒

We can compute the latter by constructing the 𝑍 matrix whose rows are 𝑧⊺
𝑛 . (We use 𝑍 to

differentiate the 𝑋 matrix from the previous example.) Using similar reasoning to the one–hot
encoding, we see that

𝑍⊺𝑍 = ( 𝑁 𝑁𝑔
𝑁𝑔 𝑁𝑔

) .

This is invertible as long as 𝑁𝑔 ≠ 𝑁 , i.e., as long as there is at least one 𝑘𝑛 = 𝑒. We have

(𝑍⊺𝑍)−1 = 1
𝑁𝑔(𝑁 − 𝑁𝑔) ( 𝑁𝑔 −𝑁𝑔

−𝑁𝑔 𝑁 ) and 𝑍⊺𝑌 = ( ∑𝑁
𝑛=1 𝑦𝑛

∑𝑛∶𝑘𝑛=𝑔 𝑦𝑛
)

It is possible (but a little tedious) to prove ̂𝛾0 = ̄𝑦𝑒 and ̂𝛾𝑔 = ̄𝑦𝑔 − ̄𝑦𝑒 using these formulas. But
an easier way to see it is as follows.
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Note that 𝑥𝑛𝑒 + 𝑥𝑛𝑔 = 1. That means we can always re-write the regression with a constant
as

𝑦𝑛 ∼ 𝛾0 + 𝛾𝑔𝑥𝑛𝑔 = 𝛾0(𝑥𝑛𝑒 + 𝑥𝑛𝑔) + 𝛾𝑔𝑥𝑛𝑔 = 𝛾0𝑥𝑛𝑒 + (𝛾0 + 𝛾𝑔)𝑥𝑛𝑔.

Now, we already know from the one–hot encoding case that the sum of squared residuals is
minimized by setting ̂𝛾0 = ̄𝑦𝑒 and ̂𝛾0 + ̂𝛾𝑔 = ̄𝑦𝑔. We can then solve for ̂𝛾𝑔 = ̄𝑦𝑔 − ̄𝑦𝑒, as
expected.

This is case where we have two regressions whose regressors are invertible linear combinations
of one another:

𝑧𝑛 = ( 1
𝑥𝑛𝑔

) = (𝑥𝑛𝑒 + 𝑥𝑛𝑔
𝑥𝑛𝑔

) = (1 1
1 0) (𝑥𝑛𝑔

𝑥𝑛𝑒
) = (1 1

1 0) 𝑥𝑛.

It follows that if you can acheive a least squares fit with 𝑥⊺
𝑛 𝛽̂, you can achieve exactly the same

fit with

𝛽̂
⊺

𝑥𝑛 = 𝛽̂
⊺

(1 1
1 0)

−1
𝑧𝑛,

which can be achieved by taking

̂𝛾⊺ = 𝛽̂
⊺

(1 1
1 0)

−1
⇒ ̂𝛾 = (1 1

1 0)
−𝑇

𝛽̂ = 1
−1 ( 0 −1

−1 1 ) 𝛽̂ = (
̂𝛽2

̂𝛽1 − ̂𝛽2
) ,

exactly as expected.

We will see this is an entirely general result: when regressions are related by invertible linear
transformations of regressors, the fit does not change, but the optimal coefficients are linear
transforms of one another.

Redundant regressors

Suppose we run the (silly) regression 𝑦 ∼ 𝛼 ⋅ 1 + 𝛾 ⋅ 3 + 𝜀𝑛. That is, we regress on both the
constant 1 and the constant 3. We have

𝑋 =
⎛⎜⎜⎜⎜
⎝

1 3
1 3
1 3
⋮

⎞⎟⎟⎟⎟
⎠

= (1 31)
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and so

𝑋⊺𝑋 = ( 1⊺1 31⊺1
31⊺1 91⊺1) = 𝑁 (1 3

3 9)

This is not invertible (the second row is 3 times the first, and the determinant is 9 − 3 ⋅ 3 = 0).
So 𝛽̂ is not defined. What went wrong?

One way to see this is to define 𝛽 = 𝛼 + 3𝛾 and write

𝑦𝑛 = (𝛼 + 3𝛾) + 𝜀𝑛 = 𝛽 + 𝜀𝑛.

There is obviously only one ̂𝛽 that minimizes ∑𝑁
𝑛=1 𝜀2

𝑛, ̂𝛽 = ̄𝑦. But there are an infinite set of
choices for 𝛼 and 𝛾 satisfying

𝛼 + 3𝛾 = ̂𝛽 = ̄𝑦.

Specifically, for any value of 𝛾 we can take 𝛼 = ̄𝑦 − 3𝛾, leaving 𝛽 unchanged. All of these
choices for 𝛼, 𝛾 acheive the same ∑𝑁

𝑛=1 𝜀2
𝑛! So the least squares criterion cannot distinguish

among them.

In general, this is what it means for 𝑋⊺𝑋 to be non–invertibile. It happens precisely when
there are redundant regressors, and many regression coefficients that result in the same fit.

Redundant regressors and zero eigenvalues

In fact, 𝑋⊺𝑋 is invertible precisely when 𝑋⊺𝑋 has a zero eigenvalue. In the preceding example,
we can see that

𝑋⊺𝑋 ( 3
−1) = 𝑁 (1 3

3 9) ( 3
−1) = (0

0) ,

so (3, −1)⊺ is a zero eigenvector. (In general you might find this by numerical eigenvalue
decomposition, but in this case you can just guess the zero eigenvalue.)

Going back to ?@eq-ols-esteq, we see that this means that

𝑋⊺𝑌 = (𝑋⊺𝑋) ( ̂𝛼
̂𝛾) = 𝑁 (1 3

3 9) ( ̂𝛼
̂𝛾) = 𝑁 (1 3

3 9) (( ̂𝛼
̂𝛾) + 𝐶 ( 3

−1))
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for any value of 𝐶. This means there are an infinite set of “optimal” values, all of which set
the gradient of the loss to zero, and all of which have the same value of the loss function
(i.e. acheive the same fit). And you can check that these family of values are exactly the ones
that satisfy 𝛼 + 3𝛾 = ̂𝛽 = ̄𝑦, since

𝛼 + 3𝛾 = (1 3) (𝛼
𝛾) and (1 3) ( 3

−1) = 0.

Soon, we will see that this is a general result: when 𝑋⊺𝑋 is not invertible, that means there
are many equivalent least squares fits, all characterized precisely by the zero eigenvectors of
𝑋⊺𝑋.

Zero variance regressors

An example of redundant regressors occurs when the sample variance of 𝑥𝑛 is zero and a
constant is included in the regression. Specifically, suppose that 𝑥𝑥 − 𝑥2 = 0.

Exercise

Prove that 𝑥𝑥 − 𝑥2 = 0 means 𝑥𝑛 is a constant with 𝑥𝑛 = ̄𝑥. Hint: look at the sample
variance of 𝑥𝑛.

Let’s regress 𝑦𝑛 ∼ 𝛽1 + 𝛽2𝑥𝑛.

For simplicity, let’s take 𝑥𝑛 = 3. In that case we can rewrite our estimating equation as

𝑦𝑛 = 𝛽1 + 𝛽2𝑥𝑛 + 𝜀𝑛 = (𝛽1 + 𝛽2 ̄𝑥) + 𝜀𝑛.

We’re thus in the previous setting with ̄𝑥 in place of the number 3.

Orthogonal regressors

Suppose we have regressors such that the columns of 𝑋 are orthonormal. This seems strange
at first, since we usually specify the rows of the regressors, not the columns. But in fact we
have seen a near–example with one–hot encodings, which are defined row–wise, but which
produce orthogonal column vectors in 𝑋. If we divide a one–hot encoding by the square root
of the number of ones in the whole dataset, we produce an normal column vector.

If 𝑋 has orthonormal columns, then 𝑋⊺𝑋 = 𝐼 , the identity matrix, and so

𝛽̂ = (𝑋⊺𝑋)−1𝑋⊺𝑌 = 𝑋⊺𝑌 .
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This is of course the same answer we would have gotten if we had tried to write 𝑌 in the basis
of the column vectors of 𝑋:

𝑌 = ̂𝛽1𝑋⋅1 + … + ̂𝛽𝑃 𝑋⋅𝑃 = 𝑋𝛽̂ ⇒
𝑋⊺𝑌 = 𝑋⊺𝑋𝛽̂ = 𝛽̂

This regression is particularly simple — each component of 𝛽̂ depends only on its corresponding
column of 𝑋.

Note that if each entry of 𝑥𝑛 is mean zero, unit variance, and uncorrelated with the other
entries, then 1

𝑁 𝑋⊺𝑋 → 𝐼 by the LLN. Such a regressor matrix is not typically orthogonal for
any particular 𝑁 , but it approaches orthogonality as 𝑁 grows.
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