
Multilinear regression as loss minimization.

Goals

• Adding regressors based on discrete random variables

– The one-hot encoding trick
– Sample means and one-hot encoding
– Adding interactions to fit different slopes

Reading

These notes are supplementary for the reading

• Ding (2024) Chapter 16 (Section 17.3 also has some interesting reading)
• Gelman, Hill, and Vehtari (2021) Sections 10.3–10.4

Ames housing data

Let’s consider an example of the Ames housing data, restricted to normal sales condition
and considering only residential sales with either good or excellent condition kitchens. I’ll
be particularly interested in whether there’s evidence that the cost of a kitchen upgrade is
reflected in the sale value of the house.

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.4 v readr 2.1.5
v forcats 1.0.0 v stringr 1.5.1
v ggplot2 3.5.1 v tibble 3.2.1
v lubridate 1.9.4 v tidyr 1.3.1
v purrr 1.0.2
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
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x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Attaching package: 'gridExtra'

The following object is masked from 'package:dplyr':

combine

housing_dir <- file.path(root_dir, "datasets/ames_house/data")
ames_orig <- read.table(file.path(housing_dir, "AmesHousing.txt"), sep="\t", header=T)
ames <- ames_orig %>%
filter(Sale.Condition == "Normal",

# remove agricultural, commercial and industrial
!(MS.Zoning %in% c("A (agr)", "C (all)", "I (all)"))) %>%

filter(Kitchen.Qual %in% c("Gd", "Ex")) %>%
mutate(Overall.Qual=factor(Overall.Qual))

ggplot(ames) +
geom_histogram(aes(x=SalePrice), bins=50)
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Here’s a histogram of the sales price:

ames %>%
ggplot() +
geom_boxplot(aes(x=Kitchen.Qual, y=SalePrice, fill=Kitchen.Qual))+
expand_limits(y=0)
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The average difference between Excellent and Good kitchens is $119179, which is a huge
amount of money. However, this difference mostly vanishes when we look only at differences
within “Overall Quality:”
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How can we study this using regression? Note that “Kitchen Quality” and “Overall Quality”
are discrete variables. Here, they do have an ordering, but suppose we just want to treat them
as distinct categories — in this way, we can learn how to account for other discrete variables,
such as neighborhood, that are harder to visualize.

One–hot encodings

How can we use categorical variables in a regression? Suppose we have a columns 𝑘𝑛 ∈ {𝑔, 𝑒}
indicating whether a kitchen is “good” or “excellent”. A one–hot encoding of this categorical
variable is given by

𝑥𝑛𝑔 = {1 if 𝑘𝑛 = 𝑔
0 if 𝑘𝑛 ≠ 𝑔 𝑥𝑛𝑒 = {1 if 𝑘𝑛 = 𝑒

0 if 𝑘𝑛 ≠ 𝑒.

We can then regress 𝑦𝑛 ∼ 𝛽𝑔𝑥𝑛𝑔 + 𝛽𝑒𝑥𝑛𝑒 = 𝑥⊺
𝑛𝛽. The corresponding 𝑋 matrix might look

like
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𝑘 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑔
𝑒
𝑔
𝑔
⋮

⎞⎟⎟⎟⎟⎟⎟
⎠

𝑋 = (𝑥𝑔 𝑥𝑒) =
⎛⎜⎜⎜⎜⎜⎜
⎝

1 0
0 1
1 0
1 0
⋮

⎞⎟⎟⎟⎟⎟⎟
⎠

Note that 𝑥⊺
𝑔 𝑥𝑔 is just the number of entries with 𝑘𝑛 = 𝑔, and 𝑥⊺

𝑔 𝑥𝑒 = 0 because a kitchen is
either good or excellent but never both.

We then have

𝑋⊺𝑋 = (𝑥⊺
𝑔 𝑥𝑔 𝑥⊺

𝑔 𝑥𝑒
𝑥⊺

𝑒 𝑥𝑔 𝑥⊺
𝑒 𝑥𝑒

) = (𝑁𝑔 0
0 𝑁𝑒

) .

Then 𝑋⊺𝑋 is invertible as long as 𝑁𝑔 > 0 and 𝑁𝑒 > 0, that is, as long as we have at least one
observation of each kitchen type, and

(𝑋⊺𝑋)−1 = (
1

𝑁𝑔
0

0 1
𝑁𝑒

) .

Similarly, 𝑥⊺
𝑔 𝑌 is just the sum of entries of 𝑌 where 𝑘𝑛 = 𝑔, with the analogous conclusion for

𝑥𝑒. From this we recover the result that

𝛽̂ = (𝑋⊺𝑋)−1𝑋⊺𝑌 = (
1

𝑁𝑔
0

0 1
𝑁𝑒

) (
∑𝑛∶𝑘𝑛=𝑔 𝑦𝑛
∑𝑛∶𝑘𝑛=𝑒 𝑦𝑛

) = (
1

𝑁𝑔
∑𝑛∶𝑘𝑛=𝑔 𝑦𝑛

1
𝑁𝑒

∑𝑛∶𝑘𝑛=𝑒 𝑦𝑛
) .

If we let ̄𝑦𝑒 and ̄𝑦𝑔 denote the sample means within each group, we have shows that ̂𝛽𝑔 = ̄𝑦𝑔
and ̂𝛽𝑒 = ̄𝑦𝑒, as we proved before without using the matrix formulation.

Ames example

Note that we get the same thing by just computing means and running a regression in the
Ames data:

ames %>%
group_by(Kitchen.Qual) %>%
summarize(mean_price=mean(SalePrice)) %>%
pivot_wider(names_from=Kitchen.Qual, values_from=mean_price) %>%
print()
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# A tibble: 1 x 2
Ex Gd

<dbl> <dbl>
1 327007. 207828.

reg <- lm(SalePrice ~ Kitchen.Qual - 1, ames)
print(coefficients(reg))

Kitchen.QualEx Kitchen.QualGd
327006.5 207828.0

And when we look at the model matrix for the regression, we see the one-hot encoding in
action:

x <- model.matrix(SalePrice ~ Kitchen.Qual - 1, ames)
bind_cols(
select(ames, Kitchen.Qual),
x) %>%
head(10)

Kitchen.Qual Kitchen.QualEx Kitchen.QualGd
1 Gd 0 1
2 Ex 1 0
3 Gd 0 1
4 Gd 0 1
5 Gd 0 1
6 Gd 0 1
7 Gd 0 1
8 Gd 0 1
9 Gd 0 1
10 Ex 1 0

What if we included a constant?

reg_const <- lm(SalePrice ~ Kitchen.Qual, ames)
print(coefficients(reg_const))

(Intercept) Kitchen.QualGd
327006.5 -119178.5
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You will show in your homework that these two regressions are equivalent, but that the in-
terpretaion of their coefficients is different. In this case, the equivalence is clearest from the
prediction function:

reg <- lm(SalePrice ~ Kitchen.Qual - 1, ames)
reg_const <- lm(SalePrice ~ Kitchen.Qual, ames)

good_df <- data.frame(Kitchen.Qual="Gd")
ex_df <- data.frame(Kitchen.Qual="Ex")

cat("Estimated difference without regressing on a constant: ",
predict(reg, ex_df) - predict(reg, good_df), "\n")

Estimated difference without regressing on a constant: 119178.5

cat("Estimated difference regressing on a constant: ",
predict(reg_const, ex_df) - predict(reg_const, good_df), "\n")

Estimated difference regressing on a constant: 119178.5

The key is to interpret the coefficients by plugging in multiple values and seeing what the
fitted model predicts. Depending on how you set up your regression, this may or may not
correspond to a particular coefficient value!

Controlling for multiple variables

We can now regress on kitchen quality “controlling for” overall quality (scare quotes inten-
tional). One way to do this is to regress on one-hot indicators for both:

reg_qual <- lm(SalePrice ~ Overall.Qual + Kitchen.Qual, ames)
print(coefficients(reg_qual))

(Intercept) Overall.Qual3 Overall.Qual4 Overall.Qual5 Overall.Qual6
89395.19 22100.00 73468.42 86982.22 119942.62

Overall.Qual7 Overall.Qual8 Overall.Qual9 Overall.Qual10 Kitchen.QualGd
150197.56 206392.52 266350.76 392470.83 -30395.19
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Note that the increase in sales price associated with an Excellent kitchen is much lower after you
control for overall quality of the house in this way. It appears that much of the difference
in cost in the above regression may be attributed to correlation between kitchen
quality and overall house quality.

Note that the above regression assumes that the “effect” of overall quality is the same irrespec-
tive of the kitchen quality. We could run a regression with all the interactions to separately
estimate the change in kitchen quality for each house quality. This is what actually corresponds
to the graph above:

reg_qual <- lm(SalePrice ~ Overall.Qual * Kitchen.Qual - 1, ames)
print(summary(reg_qual))

Call:
lm(formula = SalePrice ~ Overall.Qual * Kitchen.Qual - 1, data = ames)

Residuals:
Min 1Q Median 3Q Max

-168246 -29701 -4211 22776 276754

Coefficients: (3 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

Overall.Qual2 62246 59361 1.049 0.294604
Overall.Qual3 84346 45100 1.870 0.061737 .
Overall.Qual4 135715 37507 3.618 0.000311 ***
Overall.Qual5 169931 16713 10.168 < 2e-16 ***
Overall.Qual6 142425 23636 6.026 2.33e-09 ***
Overall.Qual7 239900 13646 17.580 < 2e-16 ***
Overall.Qual8 311166 9271 33.565 < 2e-16 ***
Overall.Qual9 355043 6493 54.679 < 2e-16 ***
Overall.Qual10 478246 13111 36.478 < 2e-16 ***
Kitchen.QualGd -3246 35905 -0.090 0.927979
Overall.Qual3:Kitchen.QualGd NA NA NA NA
Overall.Qual4:Kitchen.QualGd NA NA NA NA
Overall.Qual5:Kitchen.QualGd -20254 39849 -0.508 0.611362
Overall.Qual6:Kitchen.QualGd 41057 43112 0.952 0.341146
Overall.Qual7:Kitchen.QualGd -27466 38491 -0.714 0.475649
Overall.Qual8:Kitchen.QualGd -44328 37218 -1.191 0.233910
Overall.Qual9:Kitchen.QualGd -23061 39172 -0.589 0.556178
Overall.Qual10:Kitchen.QualGd NA NA NA NA
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 47270 on 1041 degrees of freedom
Multiple R-squared: 0.9598, Adjusted R-squared: 0.9592
F-statistic: 1657 on 15 and 1041 DF, p-value: < 2.2e-16

The problem is these are extremely variable. Using additive effects can be thought of smoothing
out the data so you can do “as-if” comparisons within a particular bucket.

Ding, Peng. 2024. “Linear Model and Extensions.” arXiv Preprint arXiv:2401.00649.
Gelman, Andrew, Jennifer Hill, and Aki Vehtari. 2021. Regression and Other Stories. Cam-

bridge University Press.

9


	Goals
	Reading
	Ames housing data
	One–hot encodings
	Ames example

	Controlling for multiple variables

