STAT151A Quiz 2 (Feb 13th)

Please write your full name and email address:

For this quiz, we'll consider the linear models

$$y_n = \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{x}_n + \varepsilon_n \text{ and } y_n = \boldsymbol{\gamma}^{\mathsf{T}} \boldsymbol{z}_n + \eta_n$$

with

$$\boldsymbol{x}_n = (1, x_n)^{\mathsf{T}}$$
 and $\boldsymbol{z}_n = (1, z_n)^{\mathsf{T}}$ where
 $\overline{\boldsymbol{x}} := \frac{1}{N} \sum_{n=1}^N x_n$ and $z_n := x_n - \overline{\boldsymbol{x}}.$

Assume that x_n is not a constant (i.e., for at least one pair n and $m, x_n \neq x_m$.).

Let X denote the $N \times 2$ matrix whose *n*-th row is $\boldsymbol{x}_n^{\mathsf{T}}$, and Z denote the $N \times 2$ matrix whose *n*-th row is $\boldsymbol{z}_n^{\mathsf{T}}$.

Recall that the inverse of a 2x2 matrix is given by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

You have 20 minutes for this quiz.

There are three parts, (a), (b), and (c), each weighted equally.

(a)

Find a 2×2 matrix **A** such that $\mathbf{Z} = \mathbf{X}\mathbf{A}$.

(b)

Suppose I tell you that the OLS estimate of β is given by $\hat{\beta} = (2,3)$, and that $\overline{x} = 4$. What is the value of $\hat{\gamma}$, the OLS estimate of γ ?

(c)

In general, can you say whether one regression will provide a better fit than the other? That is, can you say which of $\frac{1}{N} \sum_{n=1}^{N} (y_n - \boldsymbol{z}_n^{\mathsf{T}} \hat{\gamma})^2$ and $\frac{1}{N} \sum_{n=1}^{N} (y_n - \boldsymbol{x}_n^{\mathsf{T}} \hat{\beta})^2$ is smaller? Argue why or why not.